176 research outputs found

    Decentralized event-triggered control over wireless sensor/actuator networks

    Full text link
    In recent years we have witnessed a move of the major industrial automation providers into the wireless domain. While most of these companies already offer wireless products for measurement and monitoring purposes, the ultimate goal is to be able to close feedback loops over wireless networks interconnecting sensors, computation devices, and actuators. In this paper we present a decentralized event-triggered implementation, over sensor/actuator networks, of centralized nonlinear controllers. Event-triggered control has been recently proposed as an alternative to the more traditional periodic execution of control tasks. In a typical event-triggered implementation, the control signals are kept constant until the violation of a condition on the state of the plant triggers the re-computation of the control signals. The possibility of reducing the number of re-computations, and thus of transmissions, while guaranteeing desired levels of performance makes event-triggered control very appealing in the context of sensor/actuator networks. In these systems the communication network is a shared resource and event-triggered implementations of control laws offer a flexible way to reduce network utilization. Moreover reducing the number of times that a feedback control law is executed implies a reduction in transmissions and thus a reduction in energy expenditures of battery powered wireless sensor nodes.Comment: 13 pages, 3 figures, journal submissio

    Isochronous Partitions for Region-Based Self-Triggered Control

    Full text link
    In this work, we propose a region-based self-triggered control (STC) scheme for nonlinear systems. The state space is partitioned into a finite number of regions, each of which is associated to a uniform inter-event time. The controller, at each sampling time instant, checks to which region does the current state belong, and correspondingly decides the next sampling time instant. To derive the regions along with their corresponding inter-event times, we use approximations of isochronous manifolds, a notion firstly introduced in [1]. This work addresses some theoretical issues of [1] and proposes an effective computational approach that generates approximations of isochronous manifolds, thus enabling the region-based STC scheme. The efficiency of both our theoretical results and the proposed algorithm are demonstrated through simulation examples

    Symbolic models for nonlinear control systems without stability assumptions

    Full text link
    Finite-state models of control systems were proposed by several researchers as a convenient mechanism to synthesize controllers enforcing complex specifications. Most techniques for the construction of such symbolic models have two main drawbacks: either they can only be applied to restrictive classes of systems, or they require the exact computation of reachable sets. In this paper, we propose a new abstraction technique that is applicable to any smooth control system as long as we are only interested in its behavior in a compact set. Moreover, the exact computation of reachable sets is not required. The effectiveness of the proposed results is illustrated by synthesizing a controller to steer a vehicle.Comment: 11 pages, 2 figures, journa
    • …
    corecore